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ABSTRACT 

Nowadays, it is common to see the use of a network of machines 

to distribute the workload and to share information between 

machines. In these distributed systems, the scheduling of resources 

to applications may be accomplished by a Resource Management System 

(RMS). 

In order to come up with a good schedule for a set of 

applications to be distributed among a set of machines, the 

scheduler within an RMS uses a model to predict the execution time 

of the applications. A model from a previous thesis was analyzed and 

refined to estimate the time that the last task will be completed 

when scheduling several tasks among several machines. The goal of 

this thesis was to refine the model in such a way that it correctly 

predicted the execution times of the schedules while doing so in an 

efficient manner. 

The validation of the model demonstrated that it could 

accurately predict the relative execution time of a communication- 

intensive, asynchronous application, and of certain compute- 

intensive, asynchronous applications. However, the level of detail 

required for this model to predict these execution times is too 

high, and therefore, inefficient. 
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I.   INTRODUCTION 

This thesis explores the use of an analytical model to 

predict an application's performance given a particular 

distributed network system and an accurate assessment of the 

available resources. The goal of this thesis is to refine an 

already-existing model to more accurately predict the 

execution times of applications. A previous thesis 

investigated questions similar to those addressed here, but 

limited its scope as follows: 

• The use of three identical machines to form the 

network; 

• Each machine consisted of Pentium processors, each 

running either Linux Kernel 2.0.32 or Microsoft 

Windows NT Workstation 4.0 as the operating system 

(the same operating system on all three machines at 

the same time); 

• The three machines were connected by an isolated 

local area network; 

• Each application consisted of three inter- 

communicating processes, each of which executed 

within a Java Virtual Machine (JVM); 

• Each of the three processes consisted of five 

threads; 



• The only processes running on the machines at the 

time of data-collection were those that applied to 

the research; 

• All processes ran either in a synchronous or an 

asynchronous mode; 

• All processes were compute-intensive. 

The model, as it currently stands, correctly predicts the 

relative execution times of compute-intensive applications, 

but it does not accurately predict the performance of 

communication-intensive applications. The model's 

predictions do not account for the following: 

• The time required for the CPU's to switch from one 

thread of execution to another (context switching). 

The more threads that require the use of each CPU, 

the more time it takes to perform a context switch; 

• The time that is required for a process to "recover" 

from a collision on the network (when two processes 

attempt to send a message over the network at the 

same time); 

• The overlap of a process's communication time and 

its computation time. 

The model uses an analytical solution that predicts how long 

a given application will run when given certain resources to 

use. In order to test the correctness of the model, an 



application emulator was developed to emulate 

computationally intensive and communication-intensive, as 

well as synchronous and asynchronous, applications. 

The next section of this chapter will give some 

background that explains the motivation for conducting this 

thesis research and how the research furthers the goals of a 

project called MSHN (Management System for Heterogeneous 

Networks). Section B will explain the scope of the model and 

the emulator and why they were chosen. The last section 

will outline the remainder of the thesis. 

A.   BACKGROUND 

1. MSHN 

A computer network is a collection of autonomous 

computers that are able to communicate with each other. 

This is much different from a distributed system, where 

multiple autonomous computers are available to a user, but 

the way in which the computers are utilized is transparent 

to the user. This means that there is some sort of software 

in between the user and the distributed system that chooses 

what resources to assign to what jobs. 

When assigning resources to an application on one 

machine,  that machine's  operating system handles every 



aspect of the scheduling to ensure that applications run as 

efficiently as possible. By "resource," we mean anything, 

including CPU time, that an application may need to 

successfully complete its assigned task. Other examples of 

resources are input/output devices and memory. 

Nowadays, it is common to see the use of a network of 

machines to distribute the workload and to share information 

between machines. In these distributed systems, the task of 

assigning resources to applications becomes a problem of 

larger scope than that of the operating system on a single 

machine, although the concept is quite similar. 

A Resource Management System (RMS) is similar to a 

distributed operating system in that it will distribute 

available resources to the applications that need them, and 

will sometimes even break up an application so that the 

separate parts can be assigned separate resources and 

increase the performance of the whole application. 

However, a RMS differs from a distributed operating system 

in that it does not micro-manage each computer's resources. 

Each computer runs its own operating system, as all other 

resources run their own protocols or operating system. The 

RMS is responsible for keeping track of the status of all 

resources and applications and for issuing commands to begin 

executing applications. 



The purpose of the MSHN project, from which this thesis 

was borne, is to develop a RMS that supports the execution 

of many different kinds of applications, each with its own 

requirements, in a distributed and heterogeneous environment 

[Ref. 1] . The functions to be performed by MSHN are the 

following: 

• monitoring general resource availability, 

• transparent sensing of resource requirements of 

applications, 

• on-line measurement of resource and system state, 

• mapping tasks and subtasks onto a heterogeneous 

suite of machines in a way that exploits 

heterogeneity, 

• adaptation of jobs to variations in the availability 

of resources. Factors influencing QoS for MSHN 

include security, deadlines, priority, adaptability 

(preferences for different versions), resource 

availability, and external users, 

• meeting QoS requirements including real-time 

deadlines, fault tolerance, security, and 

priorities. 

This thesis is an important part of the MSHN project, 

which is part of Defense Advanced Research Projects Agency's 



(DARPA) Quorum program. The QUORUM program has as its 

overall goal the determination of whether next-generation 

Aegis and C4I applications, because of their diverse needs, 

which include some real-time needs, can be supported by 

Commercial Off-the-Shelf (COTS) and Government Off-the-Shelf 

(GOTS) products. MSHN's role is to define a resource 

management system that would wisely allocate the COTS/GOTS 

resources to such diverse applications. 

2.   Scheduling 

When scheduling resources for use by applications, each 

resource can only be assigned to one application at a time. 

For example, two processes running on a multitasking system 

must share the CPU, with each running for a specific amount 

of time before the other interrupts it (i.e., time-slicing). 

There are different methods of scheduling, each of 

which is more appropriate for certain situations than the 

others. One such method is that of a gueue. When using a 

gueue, each program waits its turn and is executed in a 

serial fashion, usually on a first-come-first-served (FIFO) 

basis. The queue is the most appropriate method for 

scheduling devices such as printers, where each different 

print job must be completed before the next can be started. 



Another method used in scheduling is called a round- 

robin. The scheduler will give each job a short time-slice 

of processing time before moving on to the next job. When 

using this approach, all jobs advance in small steps until 

the last job is completed. 

. In a distributed system, applications are scheduled in 

a way that will maximize the use of the resources available. 

In order to be even more efficient, an application may be 

divided up such that each part can be executed on different 

machines. 

When a RMS schedules its applications, there are 

multiple considerations it must make. MSHN uses a 

Scheduling Advisor to .determine which set of resources to 

assign to a newly arrived process. The Scheduling Advisor 

needs to know which resources and how much of those 

resources a process will need in order to meet its Quality 

of Service (QoS) requirements. To aid the Scheduling 

Advisor, MSHN uses a Resource Requirements Database that 

stores very fine grain information about the resource usage 

of each application that was previously executed by the RMS 

[Ref. 1]. 

In order to test the RMS and all of its components, it 

is necessary to run many different types of applications on 

the system.  It would have been very expensive and time- 



consuming to build or acquire the many different 

applications needed. Therefore it was decided that a 

general-purpose application emulator, whose parameters could 

be changed to cause it to emulate the different 

applications, was the best recourse. 

B.   APPLICATION EMULATOR AND PREDICTION MODEL 

1.   Emulator Functionality 

A real application running on a distributed system will 

require the use of certain resources over others. In 

general, an application can either be compute- or 

communication-intensive. When an application is compute- 

intensive it will need a lot of CPU processing time in order 

to accomplish its task. On the other hand, if an 

application is more communication-intensive, it will need to 

be allocated communication devices in order to accomplish 

its task. 

The application emulator will emulate compute- and/or 

communication-intensive applications and leave the same 

"resource usage footprint"(Ref.1) as the real application 

would leave. The emulator allows for the simulation of 

running applications without having to acquire, install, and 

maintain the real applications. 



The second purpose for the application emulator is that 

it will act as a monitor when there are no other MSHN- 

scheduled applications running on the system. While no 

applications are being executed on the system, it is still 

necessary to identify the status of the resources available. 

In order to do this, an instance of the application emulator 

will be started. This will be a default occurrence at 

start-up of the system. 

2.   Prediction Model 

In order to come up with a good schedule for a set of 

applications to be distributed among a set of machines, it 

would be helpful to be able to predict how long an 

application will run on a given machine. The task of 

predicting the run-time of a certain application is not a 

trivial problem and is known as the "execution time 

estimation problem" (Ref. 3) . 

There are three methods that can be followed when 

solving the execution time estimation problem: code 

analysis, analytic benchmarking/code profiling, and 

statistical prediction. Code analysis requires the thorough 

study of the source code of the application. For all but 

trivial problems, this is an inefficient method, and is not 

conducive to a heterogeneous computing environment. 



Analytic benchmarking/code profiling is more useful in 

a heterogeneous computing type of environment because it 

identifies different primitive code types and then, for each 

code type, it obtains performance benchmarks for each 

machine in the heterogeneous system. Code profiling will 

determine the code types of which a certain application is 

made up. The combination of the code profiling and the 

benchmarking together produce an estimate of the 

application's execution time. 

The last of the methods, statistical prediction, makes 

use of the applications' execution times in previous runs. 

As the number of times the application is executed 

increases, odds are that the accuracy of the prediction will 

also increase. The problem with this method is that there 

is no way of predicting the execution time of a given 

application if it has never been executed on a certain 

machine. 

The model used for this thesis, which estimates the 

time that the last task will be completed when scheduling 

several tasks among several machines, uses an analytical, 

closed-form solution to solve the problem. This is a form 

of the benchmarking/code profiling technique mentioned 

earlier. The model will be explained in more detail in 

Chapters II and III. 
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C.   ORGANIZATION 

Previous work done in this area of research will be 

discussed in Chapter II of this thesis. Chapter II covers 

in detail the thesis to which this thesis has followed up. 

It also presents some work performed in statistical 

prediction for distributed computing environments and how 

SmartNet,' MSHN's predecessor, handled its scheduling. 

Chapter III will discuss the details of the prediction 

model, as well as how the application emulator is used to 

validate the model. Chapter IV will present the results of 

our experiments. Finally, Chapter V will give a summary of 

the thesis. 

11 
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II.  RELATED WORK 

This chapter consists of a presentation of the results 

of the thesis to which this thesis follows up. As 

described in Chapter I, the motivation for this research is 

to determine the granularity necessary for a model to 

predict execution times of applications to be scheduled in 

a heterogeneous distributed computing environment. The 

prediction task raises some fundamental issues. However, 

very little sophisticated research has been conducted to 

address these issues. We will discuss some recent research 

conducted at Ohio State University that addresses this very 

topic. The last section of this chapter summarizes the 

functionalities of another resource management system, 

SmartNet, which is the predecessor of MSHN. 

A.   FIRST VERSION OF MODEL 

1.   Goal of Model 

The goal of the model as it was originally designed 

was to "determine the appropriate granularity to use in a 

model for resource allocation."(Ref. 1) This means finding 

a good balance between finding a model that is so fine- 

grained that it takes a long time to produce its result, 

and finding a model that is too simple as to produce a 

13 



result that is either not accurate enough or completely- 

incorrect. There are trade-offs between using a fine- 

grained model and using a coarser grained model. The 

overhead incurred and the desired level of accuracy are 

just two of the many aspects of choosing the right level of 

granularity in a model. 

As was listed in Chapter I, this execution time 

prediction model was able to predict the relative execution 

time of an application that was compute-intensive, but not 

that of a communication-intensive application. There are 

times when determining the relative performance of a 

schedule is "good enough," but there are times when it is 

necessary to predict the absolute performance. The 

following example of the difference between relative and 

absolute performance was given in Reference 1. 

Say we have two schedules of an application, each with 

a predicted and an actual run time, as shown in Figure 1. 

If we have accurately predicted the relative performance of 

two schedules, when the predicted times, Al and Bl, are 

compared to the actual run times, A and B, we can correctly 

determine which schedule is better than the other. In this 

example, if we choose schedule A, we can deem the 

prediction model "good enough" for our purposes.  However, 

14 



if we choose schedule A when assigning a particular task to 

a machine, and the same request is made again, our model 

would again assign the same schedule for that second task. 

This is because the time required to execute two Al 

schedules is less than the time required for one Bl 

schedule to execute. But in reality, twice the time needed 

for schedule A is not less than the time required for 

schedule B. 

A   A1   B   B1 

Schedules 

Figure 1 [From Ref. 1]. Example of Actual v. 
Predicted Times 

2.   Model Composition 

This model uses as its heuristic the time at which the 

last process in a schedule completes its execution. The 

class of applications that can be modeled using this simple 

model is that of applications whose resource usage patterns 

15 



can be divided up between its computation and its 

communication load. This allows the model to remain 

flexible in the way that it defines a particular 

application, while still being able to model a wide variety 

of applications. (Ref. 1) 

The inputs to the model, known a   priori,    are broken 

down as follows: 

a) Computation Time 

• The amount of time the application is expected to 

use the CPU. 

• This does not include any time the CPU is used 

for process communications. 

• If more than one process is using a CPU at the 

same time, the computation time must be dilated. 

b) Communication Time 

• This is divided up into the time spent sending 

the message, which is dependent on the throughput 

of the communication link (either an Ethernet 

connection or shared memory within a single 

machine) and the time spent processing the 

message by the sender and receiver (considered 

the latency time).  The algorithms for measuring 

16 



the   throughput   and  latency  between/within 

machines are described later. 

• If more than one process is sending data over any 

communication link, then there is a contention 

for that resource. 

• We know the mean number of messages, along with 

the mean size of those messages and their 

distribution types, that each process is to send 

to each of the other processes. 

3.   Measuring Latency 

The time required for a message to propagate up and 

down the TCP/IP stack is an example of the network latency 

as used in this model. To measure this value, we use the 

following method: with no other network traffic currently 

on the links, we send a large number of small messages (in 

this instance, 10,000 1-byte messages), and then echo the 

messages back to the sender. This time represents two 

latency times, since we measure the time it took for the 

receiver to receive and then send the messages back to the 

sender. If this latency time is divided by two, then we 

have our one-way latency. Now this value, divided by the 

total number of messages, gives us the latency per message. 

17 



This latency, when actually measured and compared to 

the propagation time, was too insignificant to include in 

the model.  It was therefore not actually used. 

4. Measuring Throughput 

The model uses a procedure that sends a large message 

between the sender and the receiver (both could be on the 

same or on different machines) . This is different than the 

method used for measuring the latency, which sent a large 

number of very small messages, assuming that the 

propagation time for very small messages is zero. The time 

required for the message to be sent, received, and echoed 

back to the sender is measured. That time divided by two 

gives you the time required to send the message in only one 

direction. We then subtract the one-way latency time, 

since it is only the propagation time for which we are 

looking. If that time is divided by the size of the message 

sent, the resulting value is the throughput for that link. 

5. Model Validation 

In order to validate the model, the application 

emulator mentioned in Chapter I was used. This emulator 

takes in the "model parameters as input and emulates the 

behavior of an application." (Ref. 1) These applications 

consist of processes that communicate with each other and 

18 



also spend some time performing computations. By using the 

input parameters that the prediction model uses as inputs 

to the emulator and measuring how long the applications 

actually take to run, it is possible to then compare the 

predicted versus the actual run times. 

Table 1 shows the throughput measured, and therefore 

the values used for the predictions in the model. 

Throughput for Machines running NT 
(Mbytes/sec) Machine 1, 

Gratian 
Machine 2, 

Tiberius 
Machine 3, Pius 

Gratian 4.38 0.99 0.99 
Tiberius 0.99 4.38 0.99 

Pius 0.99 0.99 
' f > 

4.38 

Table 1 [From Ref. 1]. Measured Throughput 

Table 2 represents the input parameters to the 

emulator in order to measure the CPU time of one process, 

with sole use of the CPU, without sending any messages. 

Table 3 shows the average time for an application's 

computation time. The times are for all processes running 

on either a Windows NT or Linux operating system, and 

either in a Graphical User Interface (GUI) version or in a 

non-GUI version. 

19 



Number of passes through matrix multiply: 1 
Number of messages sent (on average): 0 
Distribution of time between messages: Constant 
Size of message (on average): 4k bytes 
Distribution of message size: Constant 
Synchronous 1 

Table 2 [From Ref. 1] .  Parameters Used For CPU Measurement 

Average CPU only time (seconds) 
Linux NT 

GUI version 14.08 2.65 
non-GUI version 14.01 1.51 

Table 3 [From Ref. 1].  Average CPU Only Time 

Four experiments were conducted to compare the model 

to the actual emulator execution times. In each of the 

experiments, the emulation of the application consisted of 

three homogeneous processes, each with a computational 

thread and an input and output thread for each of the two 

other processes. All of the output threads sent the same 

number of messages, all of the same distribution in size, 

to the other processes. The three processes, distributed 

among the three machines, make up 27 possible schedules. 

The mapping of processes to the machines is as shown in 

Table 4. 

20 



Schedule Machine 
Number Assignment 

1 111 
2 211 
3 311 
4 121 
5 221 
6 321 
7 131 
8 231 
9 331 
10 112 
11 212 
12 312 
13 122 
14 222 
15 322 
16 132 
17 232 
18 332 
19 113 
20 213 
21 313 
22 123 
23 223 
24 323 
25 133 
26 233 
27 333 

Table 4 [From Ref. 1] .  Mapping of Schedule Number To 
Machine Assignments 

The experiment details were as follows: 

21 



a) 25 Messages,   Synchronous,   GUI Version 

Table 5 shows the parameters used as inputs for 

the model and emulator. As shown in Figure 2, the model was 

able to predict the relative run times of all possible 

schedules of the three processes on the three machines. 

However, the model is not able to predict absolute run 

times. 

Number of passes through matrix multiply: 1 
Number of messages sent (on average): 25 
Distribution of time between messages: constant 
Size of message (on average): 4k bytes 
Distribution of message size: constant 
Synchronous 1 

Table 5 [From Ref. 1] .  Parameters Used for Experiment One 
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Figure 2   [From Ref.   1] .     Actual  vs.   Predicted Run-Times  for 
NT,   Experiment One,   GUI,   25 Messages,   Synchronous 
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Jb^  25 Messages,   Synchronous,  Non-GUI 

The parameters used as inputs to the emulator for 

this experiment are the same as those used for experiment 

one. The only change between the two experiments was the 

use of the GUI- versus the non-GUI version of the emulator. 

The model was still not able to predict absolute run times, 

but relative performance was still predicted correctly. 

Figure 3 shows the results of experiment two. Note that 

the scale of the y-axis is different for each experiment's 

output graph. This is due to the different range of run 

times for the schedules in each experiment. 
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Figure 3 [From Ref. 1]. Actual vs. Predicted Run-Times for 
NT, Experiment Two, non-GUI, 25 Messages, Synchronous 
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c)       25 Messages,  Asynchronous,  Non-GUI 

This third experiment uses the same input 

parameters as experiment two, except that the messages sent 

from each process to the other processes are sent 

asynchronously. Figure 4 shows the improvement in the 

performance of the application when all messages are not 

sent synchronously, and the performance of the model is 

also much improved. The gap between the predicted and the 

actual run times was lessened noticeably. 
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Figure 4 [From Ref. 1] .  Actual vs. Predicted Run-Times for 
NT, Experiment Three, non-GUI, 25 Messages, Asynchronous 
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d)       1250 Messages,  Asynchronous,  Non-GUI 

After running three experiments that emulated 

more compute-intensive applications, this last experiment 

was aimed at emulating a more communication-intensive 

application. The results, shown in Figure 5, tell us that 

the prediction model breaks down when attempting to predict 

run-times for communication-intensive applications. Not 

only does it not correctly predict absolute performance, 

but it also does not correctly predict relative 

performance. 

35.0 

30.0 

25.0 

£-20.0 
(A a> 

| 15.0 
c 
E 

10.0 - 

5.0- 

0.0 

i im . 11 $ 

I Actual 
I Predicted 

•»- CO     W h»  OJ 
«r-i-T-T-CNCMWCN 

Schedules 

Figure 5 [From Ref. 1] .  Actual vs. Predicted Run-Times for 
NT, Experiment Four, 1250 Messages, Asynchronous 
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B.   STATISTICAL PREDICTION THROUGH ANALYTIC BENCHMARKING 

This method of predicting task execution times for use 

in a distributed heterogeneous environment was developed at 

Ohio State university. The advantages of adopting this 

method are that it does not need to know a priori how long 

an application takes to run on each available machine in 

order for a good schedule to be determined, and that the 

algorithms can take into account the differences between 

each machine's capabilities. This method defines a task's 

execution time as a random variable, and computes that 

random variable as a function of the input data and machine 

capabilities for that specific task on a specific machine 

[Ref. 3]. 

Any process has an input data set that determines its 

execution time on a certain machine. This input data set 

can be described as a parameter vector such as: 

X=[xlx2-xp ]. 

The function t = m(X) can be used to model the task execution 

time according to this parameter vector. It is not always 

the case, however, that all q parameters can be modeled, 

thus only allowing p parameters, where p<q, to be modeled. 

Now the function used to model the execution time of a task 
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according to its input parameter vector becomes the random 

variable: 

where m(X)   represents all the modeled factors affecting the 

execution time and s  represents all the unmodeled factors. 

The study done at Ohio State University was divided 

into two distinct parts: the first computes the execution 

times of a task given an input parameter set on a 

particular machine, while the second also uses a 

parameterization of different machines. By adding the 

information of the machine type, the task execution time 

can be modeled as a function of not only previous 

observations of the task executing on machines of the same 

type, but on all observations of previous executions, 

regardless of the machine type. 

1.   Observations Between Different Machine Types are 
not Shared 

In the first part of this study, when given an input 

parameter vector, X, and a given task, the authors present 

a method for estimating m(X) and e, estimators for m(X) 

and s   in the equation presented earlier.   For the given 

27 



task, there will exist a set of n   previous observations of 

the  execution  time  {(*,.,X.)}"_ ,  where tt     is  an  observed 

execution time for the parameter vector Xi [Ref. 3] . Each 

machine type in the heterogeneous network requires a 

separate set of observations to be maintained and used in 

the statistical prediction of the current task's execution 

time. Thus, if a task is executed on a given machine type 

n times/ and then the same task is scheduled to run on a 

different type of machine, those n observations cannot be 

used in the prediction of the new execution time. 

Nonparametric regression techniques are used to 

compute m(X), since the estimate depends only on the set of 

previous observations.  This technique uses the equation 

m(X) = -t,Wi(X)ti. 
n 1=1 

(^ is a weighting function that assigns higher weights to 

observations close to the parameter X than to those farther 

from X, as shown in Figure 6. This equation states that for 

a certain parameter vector X , m(X) is a weighted average 

of the execution times, tif   of the past n   observations. 
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2 .   Parameterizing Machine Performance 

The second section of this study incorporates all of 

the sharing of observations between different machine 

types. The authors point out two reasons why one would 

want to have this capability: 
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Figure 6.  Assigning Weights to Observations 

a) Requiring a different set of observations for each 

machine type makes it difficult to add or remove any 

new machines or applications to or from the network. 

The system will have to gather a few observations for 

each new machine-application pair for the algorithm to 

accurately predict the new execution times. 

b) Because of the increased likelihood of the algorithm 

to coming up with incorrect prediction times when 
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there are only a few observations for a given machine, 

there is a chance that the new machine will not get 

tasks scheduled for execution on that machine. If 

that new machine is starved of applications to run, 

then it will not gather new observations to add to its 

short list of observations, therefore not improving 

its chances of being chosen by the scheduler [Ref. 3]. 

In order to share all observations from all machines 

when predicting the execution time for an application on 

any given machine, one has to have a method for numerically 

characterizing all machines and thus include that 

characterization in the input parameter vector. This 

method would numerically indicate the performance 

difference/similarity between any given set of machines. 

The method of analytic benchmarking is used for this 

purpose. 

Using this method, each machine in the network is 

characterized by a benchmark vector. Ideally, one would 

like to have a benchmark for every possible code type that 

characterizes the performance of each machine. In reality, 

it is not efficient, if even possible, to come up with a 

complete set of benchmarks.  Therefore, a "reasonable set 
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of r benchmarks [Ref. 3]" is obtained. This set of 

benchmarks will comprise a machine space, where each 

machine is represented within the machine space by a 

benchmark vector. 

For example, machine * is represented by the vector 

B; =\bjbf"-bi],     where benchmarks  2 through r     affect  the 

performance of machine i . 

To predict the execution time of a task with an input 

parameter vector of X = [x1x2-- xp  ]  on machine i     with a 

benchmark  parameter  vector Bt =\b}b?---b-],  the  following 

parameter vector would be used:    Y= \bjbf---b-x1x2---xp\ . 

3.   Algorithm Summary 

The following is the authors' summary of the Execution 

Time Estimation Algorithm presented in this paper (Ref. 3): 

begin 
For each candidate machine j   with 

benchmark vector By = 
J J     J 

begin 

Compute Mjj)      anc*  ^  where 

Yj-lbfi-b'jxW-x']. 
end 
Give estimates computed above to 
matching and scheduling algorithm. 
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The  algorithm  will   return  a 
machine j    chosen to execute the 
task. 
Execute the task on machine j   and 
measure the execution time tn+i . 

Add observation (t„+1,Yn+1)   to the set 
of observations. 
n = n + l . 

end 

When a new application is first introduced to the 

network, it must be run at least one time in order to get 

at least one observation. To function correctly, the 

algorithm requires each application to have at least one 

recorded observation. For the algorithm to function more 

precisely, the new application should be executed on at 

least a few of the machines. The authors state that "these 

values are easily obtained during the development, testing, 

and debugging of the application." (Ref. 3) 

4.   Validation of Algorithm 

In order to validate the use of their algorithm, the 

authors ran a number of experiments using a network of 16 

heterogeneous machines. In three different experiments, 

they simulated adding a new machine to the existing network 

and running an application on that machine. These 

simulations were done to compare the performance difference 
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of the execution time estimation algorithm when 

observations can and cannot be shared between machines. 

The number of observations varied between 1 and 50. The 

application that was chosen to run was a Cholesky 

decomposition algorithm whose execution time depends on one 

parameter: the size of a matrix. 

The first simulation shows the performance of the 

estimation algorithm when observations cannot be shared 

between machines. Therefore, the input parameter vector to 

the estimation algorithm was made up of only the size of 

the matrix used in the Cholesky algorithm task. The second 

simulation added the ability of the estimation algorithm to 

use 350 observations previously gathered from executing 

that application uniformly on the other 15 machines. In 

this simulation, a 10-dimensional machine space 

(constructed from 10 benchmarks), reduced to 3 dimensions, 

was used. The third simulation was similar to the second, 

with the difference being that the full 10-dimensional 

machine space was used. 

The results of the three simulations show that being 

able to share observations between machines produces a much 

more accurate estimated execution time than when 

observations  are not  shared.    However,  the  difference 
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between the second and third experiments shows that there 

is not much of a difference between the performance of the 

algorithm when using a full or a reduced machine space. 

When  the  number  of  observations  was  low,  the  fist 

simulation  produced  prediction  errors  of,  on  average, 

around 500 percent.  With the same number of observations, 

the second and third simulations produced errors of around 

50 percent.  When the number of observations grew larger, 

all three simulations produced errors of around 15 percent. 

The advantage of using a reduced machine space over a full 

machine  space  comes  into  play  when  measuring  the 

computational cost of the estimation algorithm.   Using a 

reduced machine space proves to be much more efficient. 

(Ref. 3) 

C.   SMARTNET 

MSHN's predecessor, SmartNet, is a scheduling 

framework that has been successfully used by the Department 

of Defense and the National Institutes of Health. It was 

developed by the Heterogeneous Computing team at the US 

Navy's facility at the Naval Command, Control, and Ocean 

Surveillance Center (NCCOSC) for Research, Development, 

Testing and Evaluation  (RDT&E)  in San Diego  [Ref.  2] . 
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SmartNet's purpose was to optimize schedules for compute- 

intensive jobs among a network of heterogeneous computers 

[Ref. 1] . By using SmartNet as the scheduler or basic RMS 

within a distributed system, that computing environment's 

performance in executing its applications could be 

improved. 

The major research contributions made by SmartNet 

included using a job's compute characteristics and data 

collected from the previous executions of the job to 

predict that job's expected run-time on a particular 

machine. With the ability to predict the execution times 

of applications, SmartNet was geared towards minimizing the 

time when the last job scheduled among a set of jobs 

finished running. SmartNet supported the idea that being 

able to estimate average application run-times was good 

enough for scheduling purposes, and that predicting exact 

run-times was not absolutely necessary [Ref. 1]. 

SmartNet consists of four separate processes: 

1. Controller  —  interfaces  with  and  manages  all 

resources. 

2. Scheduler   —   includes   Exhaustive,   Greedy, 

Evolutionary,  and  Simulated Annealing  scheduling 
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algorithms.   New algorithms are easily integrated 

with the existing ones. 

3. Database — maintains information on machines, jobs, 

expected time for completion (ETC) data for all 

machine-job pair listings. These ETC's are used by 

the Scheduler when assigning machines to current 

jobs. 

4. Learning and Accounting — tracks and reports 

processes that exceed their ETC by more than a 

predetermined amount of time and may cause the 

schedule of other processes to be in danger of not 

being met. The Learning and Accounting process also 

updates the Database with the actual run-time of the 

process when run on the current machine [Ref. 2]. 

In order to come up with a good schedule, the SmartNet 

Scheduler uses data obtained a priori about the 

applications to be scheduled and the resources available. 

Thus, every new application-machine pair must be included 

in the SmartNet Database. 
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D.   SUMMARY 

As this chapter shows, the task of predicting 

application execution times is currently a research area 

that is very open. Most RMS's today must have the user of 

an application provide input data when the application is 

first executed in its computing environment. The 

predictions become more accurate only after the application 

has been executed several times on each machine available, 

making it difficult when the computing environment is very 

large. The research conducted recently at Ohio State 

University is step in the right direction for heterogeneous 

computing environments. This thesis, while focusing on a 

small section of the overall problem, is also a step in the 

right direction. 
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Ill.  APPROACH 

In order to refine the existing task execution-time 

prediction model, it was necessary to break the model down 

into its component parts and analyze, correct, and validate 

each component. This chapter describes how the model is 

partitioned, and what steps were needed to modify the model 

from the original, incorrect model into the existing one. 

A.   DETERMINING THE ACCURACY OF THE TOOLS AND METHODS USED 
IN THE PREDICTION MODEL 

As stated in Chapter II, the prediction model divides 

an application's execution time into its computation time 

and its communication time. From the experiments run 

during the previous work mentioned in Chapter II, we 

suspected that the model could accurately predict an 

application's computation time, but not its communication 

time. Since the research for this thesis meant to refine 

the previous model., it was necessary to validate that both 

the computation and the communication times were being 

modeled correctly. 

1.   Computation Time 

The time that an application spends performing its 

CPU-intensive tasks is considered its computation time. 
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This parameter is known a priori, based on previous runs of 

the application, and represents the time the application is 

expected to use the CPU. This computation time, together 

with the time the application spends communicating, make up 

the application's total run time. 

As was mentioned in Chapter II, the previous model ran 

an application that did not involve any communication, and 

used that execution time as the computation time for that 

application. If the same application is executed again, but 

this time needs to run through the same calculations two 

or more times, then the execution time observed for the 

first run would only need to be multiplied by two or more, 

depending on how many times the application expected to 

perform the calculations. 

For example, the application emulator that was used to 

validate the prediction model used a computation thread 

that performed a matrix multiplication problem. If the 

application being modeled was to run through the matrix 

multiplication problem only once, then it would use the 

computation time that was already recorded from running the 

application previously. But if the application being 

modeled was expected to run through the matrix 

multiplication  three  times,  then  the  computation  time 
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previously known would simply be multiplied by three. The 

question raised by this thesis was, "Is this the right way 

to obtain the computation time of an application?" 

Intuitively, this method seems to be correct. The 

question then became whether the execution times obtained 

from the application emulator accurately represented the 

amount of time the application spent performing its matrix 

multiplication calculations. To answer this question, we 

needed to modify the application emulator slightly. 

Previously, the emulator measured how long the application 

took to execute. In order to run the emulator, the user 

started a "master controller" process that triggered a 

timer, started the application process, then when the 

application process reported to have completed, the master 

process would stop the timer. The problem with this method 

is that it did not take into account the amount of time 

spent assigning the application to a machine, nor the time 

it would take the application process to send its 

completion information back to the master process. 

The application emulator was modified so that it would 

itself time how long it took in performing its CPU- 

intensive task. This value is then passed back to the 

master  controller  process  to  be  output  for  analysis 
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purposes. The master process now has data on both how long 

it took for the application to execute, and the duration of 

the CPU-intensive portion of the application. 

2.   Communication Time 

The original prediction model divided an application's 

communication time into three parts: 

a) The  sender's  time  spent preparing its messages 

before sending them; 

b) The time transmitting the messages; 

c) The time the receiver spends processing the messages 

received. 

Parts a) and c) are grouped together to make up the 

latency time. By measuring the throughput of a network link 

and knowing the size and number of messages to be sent, we 

can determine part b) . If there is more than one process 

sharing a link between or within a machine, then the 

previous model simply divided the overall throughput of 

that link by the number of processes sharing it. 

a.)        Throughput 

As with the model's method of predicting an 

application's computation time, we also raised the question 
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of whether its method of predicting the application's 

communication time was correct. The first step was to 

determine whether the model was using the correct values 

for the throughput between the three machines, and within 

each machine, in the test bed. This involved the following 

steps: 

1) Review the code that was used to measure the 

throughputs for accuracy and possible mistakes; 

2) Since the program measured throughput by 

sending a message of known size and timing how 

long it took, then see what the throughputs 

would be when sending a small message versus 

that of a large message; 

3) Test the difference in throughput when only one 

process is transmitting versus when more than 

one process are sharing a link; 

4) Validate the throughput-measuring program by 

using a commercially-available network analyzer 

to measure the throughputs. 
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b)        Latency 

The next step in determining the accuracy of the 

model when computing an application's communication time 

was to determine if the method used to compute its latency 

time was correct. This involved simply a review of the 

code used to measure the latency time. The method used for 

the measurement is as described in Chapter II. The values 

measured were so insignificant to the overall execution 

time that the latency time was left out of the model. 

What the model failed to include was the latency 

time incurred when assigning a process to be executed on a 

remote machine (as mentioned in the previous section 

regarding "Computation Time"). It is possible that this 

was left out of this model because of the proximity of the 

three machines in the test bed, thus making this latency 

time very small. However, in a real distributed computing 

environment, the distance between processors can be very 

long. The latency involved in assigning a process to a 

distant machine would be a significant factor in the 

scheduling process. 
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B.   ANALYZING THE MODEL AS A WHOLE 

When devising a model to use, one chooses a measure to 

estimate. In this case, the measure was the time at which 

the last task of an application, when scheduled among one 

or more machines in a network, completes. In this thesis, 

as described in Chapter II, the test-bed of three 

homogeneous machines and one emulated application composed 

of three homogeneous processes allowed for 27 schedules to 

be modeled (see Table 4) . Table 6 is an example of the 

input to the prediction model and the subsequent predicted 

execution time of Schedule One, in which all three 

processes are assigned to Processor One. 

Each process is broken down into two parts, each 

representing the communications between that process and 

the other two processes in the simulated application. As 

mentioned earlier, the specific inputs to the model that 

needed to be reviewed for accuracy and validated were the 

following: 

1) CPU time 

2) CPU time multiplier 

3) Throughput 

4) Network multiplier 

5) Network Time. 
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The reasoning behind the use of the "network multiplier" 

input to the model is shown in Figure 7. The figure shows 

the three processes within the application, all scheduled 

to machine one (as is done in Schedule One) . Since all 

three processes share the internal memory, or link, within 

the machine, the network multiplier is "six." 

Throughput Measured 
Network Time 
Network Multiplier 
CHUnirrie (ms)j, *. 
CPU Time Multiplier 

Throughput Measured 
Network Time 
Network Multiplier 

Number of messages 
Message Size 
Total Data bytes 

TotaJ (seconds) _ 

Sched 1 
111 

Process 1-2      Process 2-1      Process 3-1 

4.38 
0.14 

6 
12.15 

Process 1-3      Process 2-3 

4.38 
0.14 

6 

25 
2000 

100000 

3 9189726 

4.38 
0.14 

6 

25 
2000 

100000 

3 9189726 

Process 3-2 

4.38 
0.14 

6 

25 
2000 

100000 

3.9189726 

Table  6.   Original Model' s  Prediction for  Schedule  1 

46 



MACHINE 1 

(PI 
S^     1 

/          2        ' 

\   5      3 /> 

'   Yl\ 

6        ^ P3   ) (£        4 

Figure 7.  Sharing of a communication link within a 
machine. 

If the schedule being modeled were Schedule Two, the 

first process would be scheduled on Machine Two, and the 

other two processes would be scheduled on Machine One. As 

shown in Figure 8, the Ethernet link between machines one 

and two would be shared by four communicating threads, and 

the internal link of machine one would be shared by two 

communicating threads. 

MACHINE 1 MACHINE 2 

Figure 8. Sharing Communication Links Between Two Machines. 
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So far, we have shown examples of an instance when all 

processes are scheduled to one machine, and an instance 

when one process is scheduled to one machine and the other 

two processes are scheduled to another machine. The third 

example is that of each process being scheduled on a 

separate machine. Figure 9 shows how Schedule Six shares 

its communication links. In this instance, the model used 

a network multiplier of six to represent the three machines 

sharing the Ethernet link. 

MACHINE 1 MACHINE 2 MACHINE 3 

Figure 9.  Sharing Communication Links Between Three 
Machines 

C.   VALIDATION OF NEW MODEL 

After making the necessary changes to the prediction 

model, it needed to be validated using the application 

emulator, just as the original prediction model was 

validated with the emulator. As outlined in Chapter II, 

the emulator takes the model parameters as input and runs 
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an application using those parameters. For example, if the 

input parameters to the model were such that the CPU 

multiplier were six, the number of messages to be passed 

between processes was 2000, and the size of the messages 

was 4000 bytes, then the application emulator would run 

through the matrix multiplication problem six times, send 

2000 messages between each process, and each message would 

be 4000 bytes long. The actual run time of the application 

is then be compared to the output of the model. 

D.   SUMMARY 

The coarse-grained, simple approach of the original 

prediction model proved that its methods were not "good 

enough" to accurately predict the execution •times of a 

particular type of application. This chapter outlined the 

steps taken to determine which methods within the model 

needed modification. The model is broken down into an 

application's computation time and its communication time. 

The combination of the two times makes up an application's 

execution time. 

The following chapter contains details about the 

experiments that were conducted in order to answer all of 

the questions posed in Chapter III.   The results of the 
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experiments and their meaning will show our reasoning 

behind the changes that were made to the original 

prediction model. 
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IV.  REFINING THE PREDICTION MODEL 

Refining the execution-time prediction model required 

partitioning the model into its components and validating 

or modifying each one. This chapter explains in detail how 

the model was partitioned and what experiments were 

conducted to ensure each component was correct. Our 

approach to this problem included dividing the model into 

its computation time inputs and its communication time 

inputs. 

A.   MEASURING CPU TIME 

In order to measure the exact amount of time an 

application spends performing its CPU-intensive tasks, it 

is necessary to run that application so that it does not 

perform any communication. In the case of the application 

emulator used in this thesis, we placed a timer around the 

code that performed the matrix multiplication problem that 

made up the CPU-intensive part of the application. In this 

way, it was possible to single out that part of the 

application, and to know exactly how long the CPU spent 

executing it. 

After inserting the extra lines of code into the 

application emulator,  we ran the emulator with several 
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different input parameters. The goal was to run the 

application emulator on each of the three machines 

separately, so that each machine executed the matrix 

multiplication problem without ever needing to communicate 

with other processes. After running the emulator on all 

three machines, we were able to compare the computation 

time versus the total execution time of the application on 

each of the three machines.  The results are shown in Table 

CPU time vs Total Execution Time 
(msec.) PIUS TIBERIUS GRATIAN 
Total Time 1085 1087 1085 
wv/lllUUUaUUH HIT 16 209 

Table 7.  CPU Time vs. Total Execution Time 

As Table 7 shows, the time spent in the actual matrix 

multiplication was approximately one-fifth of the total 

execution time of the application. Since the application 

did nothing other than compute the matrix multiplication, 

then the rest of the execution time is the time spent 

transmitting the schedule from the master-controller 

process to each of the three machines. 
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B.   DETERMINING THE CPU MULTIPLIER 

Since „e now know how long the application emulator 

spends computing the matrix multiplication problem, we 

needed to execute the appiication such that it ran through 

the problem more that one time. The input parameters tc the 

application emulator include an input to how many times the 

application is to run through its CPU-intensive portion, and 

therefore, it needed to be modeled. 

Once again, the method used „as to run the application 

emulator on one machine at a time, and having it send zero 

-ssages. The emulator was executed several times, each 

trme incrementing the input that determined how many times 

the application would perform the matrix multipücation 

problem.  Table 8 shows the outcome of the experiments 

ITimes thrauqh     I 
[matnx.-mufttplY§-v ^f-l*^ 

£**.?■»>«» 

Total Time 
Computation time 

1085 
220 

278 

Total Time 

369 

k^i 

1439 
500 

1606 
652 

m 
2144 
1219 

Otimpütation time 
1087 
208 

:      • "      -■ •■ ..:■• ;..■•/. :•■.;    ~~—~~n 
1     "'""    '     1377     ' '~——— 1230 

347 487 
6R&TIAN ' -: 
TV%t «'S I ':    V   I1U *i- '<■;'■' j". -J<-H-> — I        _           " ""■!■"        "'I   'Mill W4'\ 

1516 
627 

2074 
1185 

Total Time 
feomputatidnfttrme 

Table 8.  CPU Multiplier Experiment Results 

Figure 10 shows that the computation times do in fact 

grow linearly, but not symmetrically.  For example, if the 
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-. 4.   4-««v ??n msec  to execute the matrix application emulator took 220 msec. 

multiplication once, then the previous model assumed that 

it would take 440 msec, to execute it twice, 660 msec, to 

execute it three times, etc.   Our experiment proved this 

^ v^ incorrect   The formula that the previous assumption to be incorrect. 

model used to compute the CPU time was as follows: 

t (CPUtime) * (TimesThroughMatrix). 

The correct way tc compute the CPU time, when the 

application is to run through the matrix computations more 

than once, is to use the following formula: 

t a. (CPUtime) * (TimesThroughMatrix H- 1.3). 
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C.   MEASURING THROUGHPUT 

1.   Analyzing the Code Used for Measurement 

Measuring the correct throughput of the network and 

the throughput within a machine is a crucial step in the 

prediction model. The very first step in determining 

whether the model was using the correct throughput was to 

review the code used for the measurement. A thorough 

review showed that the code used to measure the throughput 

for the original prediction model was off by a factor of 

two. 

The basis behind the program used to measure 

throughput was to measure the amount of time spent sending 

a message of a given length to a given IP address and 

having the receiving machine echo the message back to the 

sending machine. For example, to measure the throughput 

between machine 1 and machine 2, machine 1 sends a message 

of 2000 bytes to machine 2, which in turn echoes the 

message back to machine 1. If machine 1 times how long 

this sending and receiving took and divides that roundtrip- 

time by twice the size of the message, it should come up 

with a value that represents the throughput between the two 

machines.  In order to get statistically correct data, the 
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test is performed 5000 times.   The following pseudo-code 

outlines the method used: 

begin 
numberOfBytes = sendString.length() * 2; 
for (1 through 50){ 

dataTime = 0; 
totalDataBytes = 0; 
start_Time; 

for (1 through 100) { 
send (sendString); 
receive (echoedString); 

} 
stop_Time; 
dataTime = stopTime-startTime; 
totalDataBytes = numberOfBytes * 100 * 2; 
throughput = totalDataBytes / dataTime; 

} 
throughput = AVERAGE(throughputs 1 through 50); 

end 

If the number of bytes being sent is calculated as the 

length of the string multiplied by two < (due to the echoing 

of the string from receiver to sender) , then it is not 

necessary to multiply "totalDataBytes" by two also.   The 

effect that this error in the code had was to give the 

impression that the throughput was twice as much as was 

actually measured.  The error was simply fixed by removing 

the final multiplication by two from "totalDataBytes." 

2.   Measuring Throughput with Messages of Different 
Sizes 

The original prediction model used one message size to 

measure the throughput of a network.   It measured the 
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throughput using the program described in the previous 

section, once for a machine's internal link, and again for 

an Ethernet link between machines. The model assumed that 

the throughputs would be the same no matter what the size 

of the message. This thesis proved that assumption to be 

incorrect. Figure 11 shows the results of an experiment 

run which measured the throughputs within and between the 

machines in the test bed. The experiment used several 

different-sized messages to test if the throughput was 

affected by message size. Each time the experiment was 

run, it would only run between one set of machines at one. 

For example, when testing the throughput between machine 1 

and machine 2, the experiment did not send any other 

messages besides those required to test that throughput. 

This ensured that nothing was affecting the measure of 

throughput besides the messages intended for that purpose. 
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Figure 11.  Throughput vs. Message Size for Various Links 

D.   DETERMINING THE NETWORK MULTIPLIER 

An application may send messages either between 

processes within a single machine, or between processes 

residing on different machines. In order for our prediction 

model to accurately predict the amount of time it takes for 

these messages to be transmitted between processes, it must 

know how the network links between the machines handle 

several processes communicating concurrently. 

To perform interprocess communication, there are 

several ways that the processes can send and receive the 

messages. In order to choose the right method of 

communication, one has to take into account the type of 

environment under which the processes will be 

communicating.   Some methods make use of shared memory 
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space between the processes while other methods may not be 

supported by all of the systems making up the distributed 

system.  [Ref. 4] 

The method explored by this thesis is the use of Java™1 

sockets. There are two forms of sockets that can be 

implemented, depending on the application using them. The 

first is a stream socket, which is implemented in the 

TCP/IP protocol. These sockets allow for reliable, 

connection-oriented communications. The second type of 

socket is a datagram socket, which is implemented in 

UDP/IP. This is a connectionless form of communication, 

and thus is not always reliable, but it is more efficient. 

Because of the stream socket's. attributes, it seemed to be 

the best choice for our application emulator. [Ref. 4] 

Several experiments were run in order to determine how 

the throughputs that were measured previously (outlined in 

the last section) were affected when more than one process 

was transmitting on a link at once. The experiments are 

presented in three sections, those run within a machine, 

those run between machines, and those run with a combination 

of the two. In order to attempt to keep things simple, all 

of the experiments were limited to sending messages of sizes 

2000 or 4000 bytes. 
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1.   Within a Machine 

The throughput between processes communicating within 

a machine was tested by measuring that throughput when only 

one process is sending messages to another process. After 

observing what this throughput was, other experiments were 

conducted where two, three, and four processes were sending 

messages within the same machine. By comparing the 

differences in throughput, we were able to see what kind of 

network multiplier we should be using in the prediction 

model. 

The original model assumed that if two processes were 

sharing a communications link, then the network multiplier 

would be two. If three processes were sharing the link, 

the multiplier would be three, and so on. These 

experiments prove that assumption to be false. 

The layout of the experiments are as shown in Figure 

12 and Figure 13.  The results are shown in Table 9. 

Figure 12.  One Process Sends Messages to Another Process 
Within the Same Machine 

1 Java™ is a Trademark of Sun Microsystems. 
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Figure  13.     Two Processes Transmitting Within the  Same 
Machine 

Number of Processes Transmitting 
Msti Size 1 2 3 4 
2000 Bvtes 1 1.2 1.5 1.7 
ä00OBvte#^ 1 1.2 1.6 1.7 

Table 9.  Network Multiplier Within a Machine 

2.   Between Machines 

The same type of experiments that were conducted in 

order to determine the network multipliers within a machine 

were conducted between machines. The same assumptions and 

conditions apply in the case of IPC between machines as 

within a machine (because of the use of sockets). Figure 

14 shows the experiments that were conducted. The results 

of the experiments are shown in Table 10 and Table 11. 
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Machinel  Machine2  Machine3 

1) 

2) 

3) 

Figure 14.  Experiments 1-3 Conducted Where Processes 
Transmit Between Machines 

ThroufthpfltffiBps)^ 
Experiment! 

Jl 
2) 

JL 

2Q00?bytejlmstj 
523 
460 
218 

4DD0aiyte^sg 
586 
340 
182 

Table 10.  Throughput Measured for Experiments 1-3 

NetyforksMu tiplier.-.'   ■ .--«& ?-"-si'ä»*.--^: 
ExpVrirrieWt; 2Q0Ckb'Ytevrrisg 4000^bWimsq 

1) 1.0 1.0 
2) 1.1 1.7 
3) 2.4 3.2 

Table 11.  Network Multipliers from Experiments 1-3 

3.   A Combination of Transmitting Between Processes 
Between Machines and Within a Machine 

The final scenario posed by this thesis concerning 

throughput  in a network is  that  of  several  processes 

communicating, some within the same machine and others on 
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another machine. This experiment was conducted to see the 

difference between this scenario and that of keeping all 

processes either on separate machines or in the same 

machine. The experiment conducted is shown in Figure 15. 

Table 12 shows the results. 

machine 1 machine 2 

Figure 15.  Experiment With Three Processes on Two Machines 

NetworkiMii tiplier 
Experimerrt 2000-byte msq 4000-byte-msg 

Ethernet 2.6 3.0 
Internal 1.5 1.7 

Table 12, Network Multipliers for Internal and External 
Links 

The previous model assumed a simple formula, once 

again, of setting the network multiplier to the different 

number of transmissions on a single link. In this example, 

it assumed that the internal link on machine 1 would have a 

network multiplier of two. The external link, or Ethernet 

connection, would have a multiplier of four. This 

experiment proved that assumption to be incorrect. 
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E.   USING A NETWORK ANALYZING TOOL 

While running the experiments to measure the 

throughput of the network, it was necessary to verify that 

these measurements were correct. In order to do this, a 

commercially-available LAN analyzer was connected to the 

network and set to measure the traffic being transmitted. 

The tool that was chosen was Network Instruments' 

Observer™. Observer™ assists the user in isolating parts 

of a network and view exactly what is being transmitted, 

which protocols are being used, the rate at which the data 

propagates, how many errors occur, and many other 

performance-related measures. 

To validate the output of the throughput-measuring 

application written for this thesis, Observer™ was set up 

to monitor the transmissions over the network. Its 

measurements were compared with the output of our 

application while our experiments were being conducted. 

Observer™ consistently matched our application's output, 

therefore validating that the results of our experiments 

were in fact correct. 
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F.   SUMMARY 

In order for the execution-time prediction model to 

accurately predict the run-times of an application when it 

is distributed across a network, the model must have 

correct input as to the throughput of the network, the 

throughput within each machine to be scheduled, and the 

amount of time the application expects to spend performing 

CPU-intensive tasks. 

The previous model made many assumptions that this 

thesis has proven to be incorrect. Chapter V will present 

in detail how the new methods used in the prediction model 

were validated by using the application emulator and 

comparing actual versus predicted run-times. 
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V.   RESULTS 

This chapter presents the results of several 

experiments that were conducted in order to validate our 

new prediction model. The results of the experiments, 

which were obtained by running the application emulator 

with various input parameters, are compared with the output 

of the model. 

The test bed of three Pentium machines that was used 

to validate the original model was not modified for this 

thesis. All of the experiments conducted were on the 

Microsoft Windows NT Workstation 4.0 operating system, and 

all of the applications were run in an asynchronous, non- 

GUI mode. For each experiment, we varied one or more of 

the following input parameters: the number of messages to 

be transmitted between processes, the size of those 

messages, the amount of computation to be done by the 

processes, or a combination of any of these. 

Our model will only be successful if it chooses the 

best schedule among the 27 possible schedules of the three 

processes among the three machines. If the model predicts 

the execution times correctly, then it will in fact choose 

the correct schedule.   It should also predict when one 
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schedule  is  relatively  better  or  worse  than  another 

schedule. 

A.   EXPERIMENT ONE:  25 MESSAGES, 2000 BYTES, 1 MATRIX 
MULTIPLICATION 

Our  model  does  not  predict  absolute  run-times 

correctly,  but  it  does  predict  relative  run-times 

correctly.   Schedules 6, 8, 12, 16, 20, and 22 are the 

fastest schedules, and schedules 1, 14, and 27 are the 

slowest.'   Our model does not show as much difference 

between the schedules' predicted run-times as the actual 

run-times  seem  to  indicate,  but  it  does  correctly 

distinguish between the slowest and the fastest schedules. 

Figure 16 shows the results of this experiment. 

Actual vs. Predicted 
NT non-GUI version (ASYHC) 25 X 2000 Msg 

en 

SD 

to . 

£    3D   - ,-   - □ Act! a I 

■ P re d tote d 

schedules 

Figure 16.  Actual vs. Predicted Run-Times for Experiment 
One 
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B.   EXPERIMENT TWO:  25 MESSAGES, 2OK BYTES, 1 MATRIX 
MULTIPLICATION 

Our  model  does  not  predict  absolute  run-times 

correctly,   nor  does  it  predict  relative  run-times 

correctly.    The model  does  a good job  of accurately 

predicting the run-times for schedules 6, 8, 12, 16, 20, 

and 22, but it also shows those schedules as not being the 

fastest when in fact they are.  Our model, once again, does 

not  show  as  much  difference  between  the  schedules' 

predicted  run-times  as  the  actual  run-times  seem  to 

indicate.  Figure 17 shows the results of this experiment. 

Actual us. Predicted 
NT non-GUI version (ASYHC) 25 Msg X 20000 Bytes 

1 t.o 

12.D 

1 D .D  - i 

BJ1   - 

V.       61 
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ta  - 

2 1   - 

DU 

□ Act« a I 

■ Fred Icte d 

i-i-T-i-T-NNCJN 

schedules 

Figure 17.  Actual vs. Predicted Run-Times for Experiment 
Two 
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C.   EXPERIMENT THREE:  250 MESSAGES, 200 BYTES, 1 MATRIX 
MULTIPLICATION 

In contrast to the last two experiments which dealt 

with a small number of large-sized messages, this experiment 

dealt with a medium number of small-sized messages. The 

model once again did a good job of predicting the slowest 

and the fastest schedules. It predicted the relative run- 

times well, and it was closer than the last two experiments 

in predicting the absolute run-times, but it still lacks a 

high level of accuracy.  The results are shown in Figure 18. 

Actual vs. Predicted 
NT (ASYHC) 250 Msg X 200 Bytes 

□ A cti a l 

■ P re d icte a 

Figure 18.  Actual vs. Predicted Run-Times for Experiment 
Three 
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D.   EXPERIMENT FOUR:  1250 MESSAGES, 200 BYTES, 1 MATRIX 
MULTIPLICATION 

For this experiment, we increased the number of 

messages over the number used in experiment three, and kept 

the size of the messages the same. Here we see that the 

model did not accurately predict either the relative, nor 

the absolute run-times of the schedules. The model is very- 

close in predicting the run-times of all schedules except 

those of 6, 8, 12, 16, 20, and 22, where all three processes 

are on different machines.  Figure 19 shows the results. 

Actual vs. Predicted 
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Figure 19.  Actual vs. Predicted Run-Times for Experiment 
Four 
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E.   EXPERIMENT FIVE:  100 MESSAGES, 2000 BYTES, 1 MATRIX 
MULTIPLICATION 

In this experiment, the model did not predict the run- 

times very well. It did not show a significant difference 

between any schedules except 1, 14, and 27. In those three 

schedules, where all three processes were assigned to the 

same machine, the model correctly shows the run-times as 

being^ greater than all of the other schedules. The results 

are shown in Figure 20. 
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Figure 20.  Actual vs. Predicted Run-Times for Experiment 
Five 
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F.   EXPERIMENT SIX:  250 MESSAGES, 2000 BYTES, 1 MATRIX 
MULTIPLICATION 

The model accurately predicts the run-times of various 

schedules in this experiment. The model predicted very 

accurately the run-times of the schedules in which all three 

processes were assigned different machines (schedules 6, 8, 

12, 16, 20, and 22). It also was accurate in predicting 

when one process was on one machine and the other two 

processes were on another machine. The only discrepancy, 

which is actually a factor in all of our experiments, was 

that machine one was also assigned to run the master 

controller process, so it took up CPU time that was not 

included in our model. This discrepancy is what caused the 

"spikes" in schedules number 1, 2, 3, 4, 7, 10, and 19. The 

model was not as accurate in predicting the absolute run- 

times of schedules 1, 14, and 27, when all three processes 

are assigned to one machine, but it did correctly show these 

schedules as being slower than the others. The results are 

shown in Figure 21. 
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Figure 21.  Actual vs. Predicted Run-Times for Experiment 
Six 

G.    EXPERIMENT SEVEN:  1250 MESSAGES, 2000 BYTES, 1 
MATRIX MULTIPLICATION 

In this experiment, for which the number of messages 

and the size of those messages were large, the model did 

very well. The absolute run-times of the model versus the 

application were very close, and all of the schedules' run- 

times were relatively correct. The results are shown in 

Figure 22. 
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Figure 22.  Actual vs. Predicted Run-Times for Experiment 
Seven 

H.   EXPERIMENT EIGHT:  1250 MESSAGES, 4000 BYTES, 1 MATRIX 
MULTIPLICATION 

Once again, like the previous experiment, the model 

did well in predicting the run-times of the schedules.  It 

was not completely accurate in predicting the absolute 

performance,  but it came very close.   It predicted the 

relative performance of the schedules very well.   The 

results are shown in Figure 23. 
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Figure  23.     Actual vs.   Predicted Run-Times  for Experiment 
Six 

I.   EXPERIMENT NINE:  2500 MESSAGES, 5000 BYTES, 6 MATRIX 
MULTIPLICATIONS 

As the number of messages and the message size continue 

to grow, the model's error margin also continues to grow. 

The output of the model is no longer as accurate as in 

experiment eight, but it still does a very good job of 

predicting the relative run-times of the schedules. Figure 

24 shows the results of this experiment. 
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Figure 24.  Actual vs. Predicted Run-Times for Experiment 
Eight 

J.   SUMMARY 

The results of nine experiments conducted to validate 

our model were presented in this chapter. The goal of the 

experiments was to vary the input parameters to the model 

and to the application emulator so that we would get a mix 

of compute-intensive, communication-intensive, and both 

compute- and communication-intensive applications in our 

experiments. 

The results show several things: 

1. Most of the inputs to the model were gathered from 

running experiments sending many messages of size 

2000 or 4000 bytes.  This fact made itself evident 
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that experiments six, seven, and eight provided the 

most accurate predictions of relative and actual 

performance. 

2. Where the original model did a good job of 

predicting absolute run-times of applications that 

were computation-intensive, this thesis did not do 

such a good job. However, since this thesis proved 

that the methods that the previous model was using 

were incorrect, there is still something that is not 

being accounted for in the execution-times of those 

applications. 

3. The model is valid (predicts relative performance 

well) for communication-intensive applications. 

Chapter VI gives a complete summary of this thesis, 

including some ideas on future work to be conducted in this 

area of research. 

78 



VI. SUMMARY 

Nowadays, it is common to see the use of a network of 

machines to distribute the workload and to share information 

between machines. In these distributed systems, the 

scheduling of resources to applications may be accomplished 

by a Resource Management System (RMS). 

In order to come up with a good schedule for a set of 

applications to be distributed among a set of machines, the 

scheduler uses a model to predict the execution time of the 

applications. The model used for this thesis, which 

estimates the time that the last task will be completed when 

scheduling several tasks among several machines, uses an 

analytical, closed-form solution to solve the problem. 

A previous thesis investigated questions similar to 

those in this thesis, and the model that it presented was a 

simple, coarse-grained model. While attempting to assess 

the detail of the model needed to come up with a good 

schedule, this previous thesis determined that its model was 

not detailed enough to provide an accurate prediction of the 

run-times of certain applications, mainly communication- 

intensive applications, to be scheduled by a RMS. The model 

needed to be refined in order to be usable. 

79 



A.   FUTURE WORK 

This thesis refined the original prediction model by 

using data collected within a controlled environment. This 

environment consisted of a test-bed of three Pentium 

machines configured exactly alike. Different distributed 

environments have different throughputs, latency, CPU 

speeds, varying operating systems between machines, and many 

other varying parameters. In order to test the model 

further, it would need to use input data from a variety of 

distributed environments. 

The model also needs to be modified so that it can 

easily take input parameters from non-homogenous 

applications. Currently, the model predicts the performance 

of applications consisting of three homogeneous processes. 

This means that the processes all spend the same amount of 

time computing and they send the same number of equal-sized 

messages. 

Another area that needs to be researched further is to 

test the refined model for accuracy when predicting 

synchronous applications. When our model was validated, it 

was only done so against applications that executed in an 

asynchronous fashion. The previous model was validated 

against both synchronous and asynchronous applications, and 
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it found that it was completely inaccurate when predicting 

the run-times of synchronous applications. 

B.   CONCLUSIONS 

As stated in Chapter IV, in order for the execution- 

time prediction model to accurately predict the run-times of 

an application when it is distributed across a network, the 

model must have correct input as to the throughput of the 

network, the throughput within each machine to be scheduled, 

the amount of time the application expects to spend 

performing CPU-intensive tasks, and the correct measure of 

dilation of CPU and network resources. 

In order to provide the correct inputs for all of the 

parameters mentioned, we had to run extensive experiments 

within our test-bed of machines. Because of the need to run 

the sort of experiments that were outlined in Chapters III 

and IV, the model may be too detailed, and not accurate 

enough, to be efficient when providing input to a scheduler 

in an RMS. 
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